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Abstract—Because of the existence of impacts, the vibro-impact system is discontinuous and strongly nonlinear, such as hammer-like 
devices, rotor-casing dynamical systems, heat exchangers, fuel elements of nuclear reactor, gears, piping systems, wheel–rail interaction of high speed 
railway coaches. Researches into the dynamic behavior of vibro-impact systems have important significance in optimization design of machinery and 
noise suppression. Hence, the complication of the dynamics of vibro-impact system has received great attention. In this paper, the analytical solution of 
non-linear vibro-impact system using multiple time scale method up to and including second order approximations is obtained. All resonance cases from 
mathematical solution are extracted. Also, the numerical solution of non-linear vibro-impact system using Runge-Kutta method of order four are obtained.  
The stability of the non-linear vibro-impact system at the worst resonance case is studied. The behaviors of the system at different values of parametric 
excitation are investigated. The effects of various parameters on the behavior of the system are studied.  A comparison with the available published work 
is reported.  

  
Index Terms— Vibro-impact system, Multiple time scale, Vibrations, Resonance, Stability. 

——————————      —————————— 

1 INTRODUCTION                                                                     
ecause of the existence of impacts, the vibro-impact sys-
tem is discontinuous and strongly nonlinear, such as 

hammer-like devices, rotor-casing dynamical systems, heat 
exchangers, fuel elements of nuclear reactor, gears, piping sys-
tems, wheel–rail interaction of high speed railway coaches. 
Researches into the dynamic behavior of vibro-impact systems 
have important significance in optimization design of machin-
ery and noise suppression. Hence, the complication of the dy-
namics of vibro-impact system has received great attention. 
Budd and Dux [1] proved that the periodic motion of the sin-
gle-degree-of-freedom vibro-impact system cannot have Hopf 
bifurcation. In recent years, many researchers investigated 
some two- and three-degree of freedom (3-dof) of vibro-
impact systems, and found that these vibro-impact systems 
can exhibit rich dynamic behavior, and have various bifurca-
tions, such as period-doubling bifurcation [2, 3], Hopf bifurca-
tion [4, 5]. Besides, there are some studies on calculation of 
Lyapunov exponents [6, 7], controlling chaos [8, 9] and rising 
phenomena and the multi-sliding bifurcation [10] in systems 
with impacts. Dynamics of vibro-impact system in two cases 
of resonance (1:3 and 1:4 resonance) was also studied by Ding 
and Xie [11].  Xie and Ding [12] considered Hopf–Hopf bifur-
cation of a 3-dof vibro-impact system. When two pairs of 
complex conjugate eigenvalues of the Jacobian matrix of the 
map at fixed point cross the unit circle simultaneously, the six-
dimensional Poincare´ map was reduced to its four-
dimensional normal form by the center manifold and the nor 
mal form methods. It was shown that there are torus T1 and 

T2 bifurcation under some parameter combinations. In Ref. 
[13], we considered a two-degree-of-freedom (2-dof) vibro-
impact system with symmetric rigid constraints, and de-
scribed the symmetry of Poincare´ map.  It was shown that if 
the Jacobian matrix of the Poincare´ map at the fixed point has 
a real eigenvalue crossing the unit circle at +1, the symmetric 
fixed point will bifurcate into two anti-symmetric fixed points 
which have the same stability via pitch fork bifurcation. In 
[14], expanded the symmetry of Poincare´ map of the 2-dof 
vibro-impact system discussed in Ref. [13] to a 3-dof vibro-
impact system with symmetric rigid constraints, and paid 
more attention to the effect of the symmetry of Poincare´ map 
on possible bifurcations. 
Sayed and Mousa [15] investigated the influence of the quad-
ratic and cubic terms on non-linear dynamic characteristics of 
the angle-ply composite laminated rectangular plate with par-
ametric and external excitations. The method of multiple time 
scale perturbation is applied to solve the non-linear differen-
tial equations describing the system up to and including the 
second-order approximation. Two cases of the sub-harmonic 

resonances cases ( 2 12Ω ≅ ω and 2 22Ω ≅ ω ) in the presence 

of 1:2 internal resonance 2 12ω ≅ ω  are considered. The stabil-

ity of the system is investigated using both frequency response 
equations and phase-plane method. It is quite clear that some 
of the simultaneous resonance cases are undesirable in the 
design of such system as they represent some of the worst be-
havior of the system. Such cases should be avoided as working 
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conditions for the system. Sayed and Mousa [16] studied an 
analytical investigation of the nonlinear vibration of a sym-
metric cross-ply composite laminated piezoelectric rectangular 
plate under parametric and external excitations. Their study 
focused on the case of 1:1:3 primary resonances and internal 
resonance, and they verified the analytical results calculated 
by the method of multiple time scale by comparing them with 
the numerical results of the modal equations. The obtained 
results were verified by comparing the results of the finite dif-
ference method (FDM) and Runge-Kutta (RKM) method. Eissa 
and Sayed [17-19] and Sayed [20], studied the effects of differ-
ent active controllers on simple and spring pendulum at the 
primary resonance via negative velocity feedback or its square 
or cubic. Amer et al. [21], studied the dynamical system of a 
twin-tail aircraft, which is described by two coupled second 
order nonlinear differential equations having both quadratic 
and cubic nonlinearities, solved and controlled. The system is 
subjected to both multi-parametric and multi-external excita-
tions. The method of multiple time scale perturbation is ap-
plied to solve the nonlinear differential equations up to the 
two order approximations. The stability of the system is inves-
tigated applying both frequency response equations and phase 
plane method. Two simple active control laws based on the 
linear negative velocity and acceleration feedback are used. 
Sayed and Hamed [22] studied the response of a two-degree-
of-freedom system with quadratic coupling under parametric 
and harmonic excitations. The method of multiple scale per-
turbation technique is applied to solve the non-linear differen-
tial equations and obtain approximate solutions up to and 
including the second-order approximations. Sayed and Kamel 
[23, 24] investigated the effect of different controllers on the 
vibrating system and the saturation control of a linear absorb-
er to reduce vibrations due to rotor blade flapping motion. 
The stability of the obtained numerical solution is investigated 
using both phase plane methods and frequency response 
equations. Sayed et al. [25] investigated the non-linear dynam-
ics of a two-degree-of freedom vibration  
 
system including quadratic and cubic non-linearities subjected 
to external and parametric excitation forces. There exist multi-
valued solutions which increase or decrease by the variation of 
some parameters. The numerical simulations show the system 

exhibits periodic motions and chaotic motions. Amer and 
Sayed [26] studied the response of one-degree-of freedom, 

non-linear system under multi-parametric and external excita-
tion forces simulating the vibration of the cantilever beam. The 
solution of this system up to and including the second order 
approximation is determined applying the multiple time scale 
perturbation. The steady state solution and its stability are 
determined. Hamed et al. [27-29] studied USM model subject 
to multi-external or both multi-external and multi-parametric 
and both multi-external and tuned excitation forces. The mod-
el consists of multi-degree-of-freedom system consisting of the 
tool holder and absorbers (tools) simulating ultrasonic ma-
chining process. The advantages of using multi-tools are to 
machine different materials and different shapes at the same 
time. This leads to time saving and higher machining efficien-
cy. Kamel and Hamed [30] studied the nonlinear behavior of 
an inclined cable subjected to harmonic excitation near the 
simultaneous primary and 1:1 internal resonance using multi-
ple scale method.  Hamed et al. [31] presented the behavior of 
the nonlinear string beam coupled system subjected to exter-
nal, parametric and tuned excitations for case 1:1 internal res-
onance. The stability of the system studied using frequency 
response equations and phase-plane method. It is found from 
numerical simulations that there are obvious jumping phe-
nomena in the frequency response curves. Kamel et al. [32] 
studied a model subject to multi-external excitation forces. The 
model is represented by two-degree-of-freedom system con-
sisting of the main system and absorber simulating ultrasonic 
machining. They used the passive vibration controller to sup-
press the vibration behavior of the system.   

2.  MATHEMATICAL MODELING 
A system of three-degree of freedom with symmetric rigid 
constraints is shown in Fig. 1 [14]. The system has three mass-
es MR1R, MR2R and MR3R. MR2R andMR3R are connected to rigid planes 
via two linear springs KR2R and KR3R, and two linear viscous 
dashpots CR2R and CR3R, respectively. MR1R is connected to MR2R via 
linear spring KR1R and linear viscous dashpot CR1R. The excitations 
on three masses are harmonic with amplitudes PR1R, PR2R and PR3R. 
For small forcing amplitudes the system undergoes simple 
oscillations and behaves as a linear system. However, as the 
amplitudes increased, MR3R begins to collide with two stops of 
MR2R, and the system becomes discontinuous and strongly non-
linear. CR1R and CR2R are assumed as proportional damping. Be-
tween any two consecutive impacts, the non-dimensional dif-
ferential equations of motion are given by  

             
 

———————————————— 
1. Department of Mathematics and Statistics, Faculty of Science, 

Taif University, Taif , El-Haweiah, P.O. Box 888, Zip Code 21974, 
Kingdom of Saudi Arabia (KSA). 

2. Department of Engineering Mathematics, Faculty of Electronic 
Engineering, Menoufia University, Menouf 32952, Egypt. 

 
 
 
 
 

   

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014                                                                                                    40 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

Fig.1. A three-degree-of-freedom vibro-impact system with 
symmetric rigid constraints [14]. 

2 3
1 1 1 2 1 1 2 1 1 2ˆ ˆ( ) ( ) ( )X c X X X X X X+ ε − +ω − +εα −  

           1 1̂ sin( )X F t= ε Ω + t                                                       (1) 
 

2
2 2 2 3 2 1 2 2 1 2 1

ˆˆ ˆ ( ) ( )X c X c X X X X X+ ε + ε − +ω + εβ −              

                 3
2 2 1 2 2̂ˆ ( ) sin( )X X X F t+εα − = ε Ω + t                 (2) 

  

 2 3
3 4 3 3 3 2 3

ˆˆX c X X X+ ε +ω + εβ                                

3 3̂ sin( )X F t= ε Ω + t                               (3) 

The parameters  
1 2 3 4 1 2 1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , ,c c c c F Fα α β β  and 
3̂F are of 

the order of 1.   

3. PERTURBATION SOLUTION 
     The approximate solution of Eqs. (1)-(3) can be obtained by 
using the method of multiple scales [33-34]. Let 

0 0 1 1 0 1( ; ) ( , ) ( , )n n nX t x T T x T Tε = + ε        ( 1, 2,3)n =   (4) 

where, n
nT t= ε  (n = 0, 1) are the fast and slow time scales 

respectively.  In terms of 0T  and 1T , the time derivatives trans-
form according to  

0 1
d D D
dt

≡ + ε   ,     
2

2
0 0 12 2d D D D

dt
≡ + ε                      (5)  

where n nD T= ∂ ∂ .  Substituting Eqs. (4)-(5) into Eqs. (1)-(3) 
and equating coefficients of similar powers of ε, one obtains: 
 

Order εP

0
P: 

 

2 2 2
0 1 10 1 20( )D x xω ω+ =                                                               (6) 

 2 2
0 2 20( ) 0D xω+ =                                                                       (7)        
2 2
0 3 30( ) 0D xω+ =                                                                        (8)                          

  

Order εP

1
P: 

 

2 2 2
0 1 11 0 1 10 1 21 1 0 10 0 20ˆ( ) 2 ( )D x D D x x c D x D xω ω+ = − + − −       

   3 2 2 3
1 10 10 20 10 20 20 10 1̂ˆ ( 3 3 ) sin( )x x x x x x x F t−α + − − + Ω + t                                                                  

(9) 
 

2 2
0 2 21 0 1 20 2 0 20 3 0 20 0 10ˆ ˆ( ) 2 ( )D x D D x c D x c D x D xω+ = − − − −    

      3 2 2 3
1 20 10 2 20 20 10 20 10 10

ˆ ˆ( ) ( 3 3 )x x x x x x x x−β − −α + − −      

      20 2̂ sin( )x F t+ Ω + t                                                          (10) 
 

2 2 3
0 3 31 0 1 30 4 0 30 2 30

ˆˆ( ) 2D x D D x c D x xω+ = − − −β                 

30 3̂ sin( )x F t+ Ω + t                                       (11) 
 
The solution of Eqs. (6)-(8) can be expressed in the complex 
form: 

10 1 1 0 1 2 2 0exp( ) exp( )x A i T A i T cc= ω +Γ ω +                            (12) 

20 2 2 0exp( )x A i T cc= ω +                                                              (13)   

30 3 3 0exp( )x A i T cc= ω +                                                              (14) 

where 2 2 2
1 1 1 2/( )Γ = ω ω −ω  and cc denotes the complex conju-

gate of the preceding terms and the , ( 1, 2,3)nA n =  are to be 
determined through the elimination of secular and small-
divisor terms from the first order approximation. Substituting 
Eqs. (12)-(14) into Eqs. (9)-(11), eliminating the secular terms, 
then the first-order approximations are given by   

11 0 1 1 2 0 2 1 0 3 2 0( , ) exp ( ) exp (3 ) exp (3 )x T T E i T E i T E i T= ω + ω + ω

4 1 2 0 5 1 2 0 6 1 2 0exp ( ( 2 ) ) exp ( ( 2 ) ) exp ( (2 ) )E i T E i T E i T+ ω + ω + ω − ω + ω +ω

7 1 2 0 8 1 0 9 1 0exp ( (2 ) ) exp ( ( ) ) exp ( ( ) )E i T E i T i E i T i+ ω −ω + Ω+ω + τ + Ω−ω + τ

10 2 0 11 2 0exp ( ( ) ) exp ( ( ) )E i T i E i T i cc+ Ω+ω + τ + Ω−ω + τ + (15) 
 

21 0 1 1 1 0 2 1 0 3 2 0( , ) exp ( ) exp (3 ) exp (3 )x T T H i T H i T H i T= ω + ω + ω

4 2 1 0 5 2 1 0 6 1 2 0exp ( ( 2 ) ) exp ( ( 2 ) ) exp ( ( 2 ) )H i T H i T H i T+ ω + ω + ω − ω + ω − ω

7 1 2 0 8 2 0 9 2 0exp ( ( 2 ) ) exp ( ( ) ) exp ( ( ) )H i T H i T i H i T i cc+ ω + ω + Ω+ω + τ + Ω−ω + τ +
                     (16) 

 

31 0 1 1 3 0 2 3 0 3 3 0( , ) exp (3 ) exp ( ( ) ) exp ( ( ) )x T T G i T G i T i G i T i cc= ω + Ω+ω + τ + Ω−ω + τ +
   (17) 

where ( 1, 2,...,11), ( 1, 2,...,9)i jE i H j= = and ( 1, 2,3)kG k =  are 
complex functions in 

1T . From the above derived solutions, 
the reported resonance cases are 

(A) Primary Resonance:  1 , 1, 2, 3.
2 n nΩ+ τ ≅ ω =  

(B) Sub-Harmonic Resonance:   
 2 , 4 , 1,2,3.n n nΩ+ τ ≅ ω Ω+ τ ≅ ω =                                                                           
(C) Internal or Secondary Resonance: 

 1 2 2 1, 1, 2,3,5.s s sω ≅ ω ω ≅ ω =  
(D) Combined Resonance:   

                1 2±Ω+ τ ≅ ±ω ±ω    
(E) Simultaneous or Incident Resonance: Any combination of 
the above resonance cases is considered as simultaneous or 
incident resonance.  

3. STABILITY OF THE SYSTEM  
Using one of the worst simultaneous principle parametric res-
onance 22Ω ≅ ω , 32Ω ≅ ω  in the presence of internal reso-

nance conditions 1 23ω ≅ ω  (confirmed numerically). To de-

scribe how close the frequencies are to the resonance condi-
tions we introduce detuning parameters 2 22Ω = ω +σ , 

3 32Ω = ω +σ  and 1 2 13ω = ω +σ  (where 1 1ˆσ = εσ and 

2 2 3 3ˆ ˆ,σ = εσ σ = εσ  are called internal and external detuning 

parameters) and eliminating the secular and small-divisor 
terms leads to the solvability conditions for the first approxi-
mations as: 

1 1 1 1 3 1 1 1 1 1 2 1 1 1 2 2
ˆˆ ˆ ˆ ˆ2 ( ) 6( )(1 )i D A i c c A A A A Aω = ω Γ − +β + α −α −Γ

           [ ]
2

32 31 2
2 1 1 1 1 1 2 1 12

2

ˆˆ ˆ ˆ ˆ3( ) 1 exp( )
8

A A A i T
 ω α

+ α −α + +α −Γ − σ ω 
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2
1 1 2 2 1 2

1 1 2 1 12 2
2 2

ˆ ˆ
ˆ ˆ ˆexp( ) exp( ( ) )

2 2 ( )
i F A i F Ai T i i T iΓ ω

− − σ + τ − σ −σ + τ
 ω − Ω+ω 

                                    

(18) 
 

3 2
2 1 2 2 2 3 1 2 1 1 2 2 1 2 2

ˆˆ ˆ ˆ2 ( ) (1 ) 3 (1 )i D A i c c A A A Aω = − ω + +Γ −β −Γ − α −Γ

2 2 2
2 1 1 1 2 2 2 1 1 1 2 1

ˆ
ˆ ˆ ˆ ˆ6 (1 ) 3 exp( ) exp( )

2
i F AA A A A A i T i T i− α −Γ + α σ − σ + τ                                   

(19) 

2 3 3
3 1 3 4 3 3 2 3 3 3 1

ˆˆˆ ˆ2 3 exp( )
2

i F Ai D A i c A A A i T iω = − ω − β − σ + τ
                       

(20)                                                        

To analyze the solutions of Eqs. (18)-(20), we express nA in the 

polar form  

        ( / 2)n n
niA a e γ=  ,   ( 1, 2,3)n =                                (21) 

where na  and nγ are the steady state amplitudes and phases 

of the motion respectively. Substituting Eq. (21) into Eqs. (18)-
(20) and equating the real and imaginary parts. Hence, the 
steady state solutions of equations are given by 

33 1 1 2
1 2 1 3 2 2 1 2

1

( ) sin cos( )
2 8

c c a a F aΓ − Γ
+ θ +Γ θ −θ + τ

ω
    

1 1
2 1 2

1

cos( ) 0
4

F aΓ
− θ −θ + τ =

ω
                             (22) 

21 2 1 1
2 1 1 1 1 2

1 1

3( )(1 )3( )
2 2 4

a a a aβ a −a −Γ
σ −σ + +

ω ω
            

3 32 1 2
1 2 1 3 2 2 1 2

1 1

3( ) cos sin( )
8 8

a a F aa −a Γ
+ + θ −Γ θ −θ + τ

ω ω
                     

1 1
2 1 2

1

sin( ) 0
4

F aΓ
+ θ −θ + τ =

ω
                                                       (23) 

 
22 3 1 2 2

2 1 2 1 2 2
2 2

( ) 3 sin cos 0
2 8 4

c c Fa a a a+ +Γ a
+ θ + θ =

ω ω
            (24) 

 
3

3 21 1 2 1 2 1
2 2 2 2 1 2

2 2 2

(1 ) 3 (1 ) 3 (1 )1
2 2 8 4

a a a a aβ −Γ a −Γ a −Γ
σ − − −

ω ω ω
  

22 2
1 2 1 2 2

2 2

3 cos sin 0
8 4

Fa a aa
+ θ − θ =

ω ω
                                  (25) 

34
3 3 3

3

cos( ) 0
2 4

Fc a a+ θ + τ =
ω

                                                       (26) 

3 32
3 3 3 3 3

3 3

31 sin( ) 0
2 8 4

Fa a aβ
s − − θ + τ =

ω ω
                                (27) 

4.RESULTS AND DISCUSSIONS 
The three-degree-of-freedom non-linear vibro-impact system 
under parametric excitations is studied. The solution of this 
system is determined up to the second order approximation 

using the multiple time scale perturbation. To study the be-
havior of the system of Eqs. (1-3), the Runge-Kutta of fourth 
order method was applied to determine the numerical solu-
tion of the given system. Fig. 2 illustrates the response for the 
non-resonant system where Ω ≠ ωR1R ≠ ωR2 R ≠ ωR3  Rat some values of 
the equation parameters . It is observed from this figure that 
the oscillation responses of the three modes of vibro-impact 
system start with increasing amplitude and the steady state 
amplitudes are closed to zero. 

 

 
Fig. 2 Non-resonance system behavior (basic case) 

CR1R = 0.02 CR2R = 0.01, CR3R = 0.002, CR4R = 0.01, αR1R= 0.5, αR2R= 0.05,     
βR1R= 0.324, βR2R= 0.2,  Ω ≠ ωR1R ≠ ωR2R ≠ ωR3 R, FR1R = 0.3 , FR2R = 0.4 , FR3R = 

0.8 
 
Fig. 3 shows that the time response of the simultaneous sub-
harmonic and internal resonance case where (Ω ≅ 2ωR2R, (Ω ≅ 
2ωR3R,  ωR1 R ≅ 3ωR2R), which is one of the worst resonance cases. It is 
observed from this figure that the oscillation responses of the 
three modes of vibro-impact system start with zero amplitude 
and the steady state amplitudes are increasing due to tuned 
oscillations. Also from this figure we have that the amplitudes 
are increased to about 9600%, 8750% and 200% of the maxi-
mum excitation forces amplitude FR3 Rrespectively. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014                                                                                                    42 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

 

 

 
Fig. 3. Simultaneous sub-harmonic and internal resonance case 

(Ω ≅ 2ω2, Ω ≅ 2ω3,  ω1 ≅ 3ω2) 

4.1. RESPONSE CURVES AND EFFECTS OF DIFFERENT 
PARAMETERS 

 
  In this section, the steady state response of the given system at 
various parameters near the simultaneous sub-harmonic and 
internal resonance case is investigated and studied. The fre-
quency response equations given by Eqs. (22-27) are solved 
numerically at the same values of the parameters shown in 
Fig. 2. 
 
Fig. 4a, show the steady state amplitudes of the first mode of 
vibro-impact system against the detuning parameters σ1 , the 
response curve is bent to the left leading  to the occurrence of 
the jump phenomena and multi-valued amplitude.  
Figs. 4b show that the steady state amplitude of the first 
modes of vibro-impact system is a monotonic decreasing func-
tion in the linear damping coefficients c1. For negative and 
postive values of the nonlinear parameter α1 the curves of the 
first modes of vibro-impact system are bent to the right and 
left and have harding and softing spring type and there exists 

jump phenomena and multi-valued amplitudes as shown in 
Fig. 4c. Fig. 4d shows that the steady state amplitude is a 
monotonic increasing function in the excitation amplitude F1.  

 
Fig.4a. Effects of the detuning parameter 1σ  

 
Fig.4b. Effects of the damping coefficient c1  

 

 
Fig.4c. Effects of the nonlinear parameter α1 
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Fig.4d. Effects of the excitation amplitude F1 

 

Fig. 5a, show the steady state amplitudes of the second mode 
of vibro-impact system against the detuning parameters σ2, 
the response curve is concave up. Figs. 5 (b, c) show that the 
steady state amplitude of the second modes of vibro-impact 
system is a monotonic decreasing function in the linear damp-
ing coefficients c2 and the nonlinear parameter α2, the re-
sponse curves are concave up leading to the occurrence of the 
jump phenomena and multi-valued amplitude. Fig. 4d shows 
that the steady state amplitude is a monotonic increasing func-
tion in the excitation amplitude F2.  

 
Fig.5a. Effects of the detuning parameter 2σ  

 
Fig.5b. Effects of damping coefficient c2 

 
Fig.5c. Effects of the nonlinear parameter α2 

 
Fig.5d. Effects of the excitation amplitude F2 

 

5. COMPARISON STUDY 
 
In the previous work [14], studied the system of vibro-impact 
when subjected to external excitation forces. The Poincare´ 
map of the system is established, and the symmetric fixed 
point of the Poincare´ map corresponds to the associated 
symmetric period n-2 motion. It is shown that the Poincare´ 
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map exhibits some symmetry property, and can be expressed 
as the second iteration of another unsymmetric implicit map. 
In our study, the response and stability of the system of three-
degree-of freedom under parametric excitation forces are in-
vestigated using the multiple time scale method. All possible 
resonance cases are extracted and investigated. The case of 
simultaneous principle parametric resonance in the presence 
of 1:3 internal resonances is considered. The stability of the 
system is investigated using both frequency response equa-
tions and phase-plane method. It is quite clear that some of the 
simultaneous resonance cases are undesirable in the design of 
such system as they represent some of the worst behavior of 
the system.   

5. CONCLUSIONS 
 
The nonlinear responses of a vibro-impact system subjected to 
parametric excitations have been studied. The problem is de-
scribed by a three-degree-of-freedom system of nonlinear or-
dinary differential equations. The case of simultaneous princi-
ple parametric resonance in the presence of one-to-three inter-
nal resonance is studied by applying multiple time scale per-
turbation method. Both the frequency response equations and 
the phase-plane technique are applied to study the stability of 
the system. The effect of the different parameters of the system 
is studied numerically. From the above study the following 
may be concluded: 

1- The simultaneous resonance case 
2 32 , 2Ω ≅ ω Ω ≅ ω  

and
1 23ω ≅ ω  is the worst cases and it should be avoid-

ed in design.  

2- The steady state amplitude of the first modes of vibro-
impact system is a monotonic decreasingfunction in 
the linear damping coefficients c1.  

3- For negative and postive values of the nonlinear pa-
rameter α1 the curves of the first modes of vibro-
impact system are bent to the right and left and there 
exist jump phenomena and multi-valued amplitudes.  

4- The steady state amplitude is a monotonic increasing 
function in the excitation amplitude F1.  

5- The steady state amplitude of the second modes of 
vibro-impact system is a monotonic decreasing func-
tion in the linear damping coefficients c2 and the non-
linear parameters α2. 

6- The steady state amplitude of the second modes of 
vibro-impact system is a monotonic increasing func-
tion in the excitation amplitude F2.  
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